The Cutoft Structure of Top Trading
Cycles in School Choice

Supplementary Appendix

D Proofs for Section 3

D.1 Definitions and Notation

We begin with some additional definitions and notation.

Let z,T be vectors. We let (z,7] = {z : + £ z and < T} denote the set of
vectors that are weakly smaller than = along every coordinate, and strictly larger
than x along some coordinate. Let K C C be a set of schools. For all vectors x, we
let 7 (x) denote the projection of x to the coordinates indexed by schools in K.

We now incorporate information about the set of available schools. We denote by
e9°={0e0|Ch’ (C) =}

the set of students whose top choice in C is ¢, and denote by n9¢ the measure of
these students. That is, for S C ©, let 79 (S) := 5 (SN ©OIY). In an abuse of
notation, for a set A C [0,1]°, we will often let 7 (A) denote 7 ({6 €O|rf € A}), the
measure of students with ranks in A, and let 79“ (4) denote 1 ({6 € ©9¢ |r? € A}),
the measure of students with ranks in A whose top choice school in C'is c.

We will also find it convenient to define sets of students who were offered or
assigned a seat along some TTC path . These will be useful in considering the
result of aggregating the marginal trade balance equations. For each time 7 let
T (v;7) X {0 € ©| 37 < 7st.1? = q.(r") and v’ < y(7)} denote the set of
students who were offered a seat by school ¢ before time 7, let T¢ (v; 7) «f {0 €O |
" £ 4(r) and Ch? (C (7)) = ¢} denote the set of students who were assigned a seat
at school ¢ before time 7, and let 7¢¢ (v;7) et {6 €O |7 £~(r) and Ch? (C) = ¢}
denote the set of students who would be assigned a seat at school ¢ before time 7 if

the set of available schools was C' and the path followed was ~.3!

31Note that 7. (v;7) and T¢(v;7) include students who were offered or assigned a seat in the
school in previous rounds.



For each interval T' = [t, ] let 7. (v; T) “r (7;%) \ Tz (7;t) be the set of students

who were offered a seat by school ¢ at some time 7 € T, and let T¢C(T;~) =
TeC (v;8) \ T (7; ) be the set of students who were assigned to a school ¢ at some
time 7 € T, given that the set of available schools was C' (v (7)) = C for each 7 € T
For each union of disjoint intervals T' = U, T, similar define 7. (v;T) = UnTe (7 T))
and T4C(T;y) € U, T4 (T,; 7).

Finally let us set up the definitions for solving the marginal trade balance equa-

tions. For a set of schools C' and individual schools b, ¢ € C', recall that

Hg‘c () = lim 177 ({0€0 | efz—c-ex) and CK’ (C) =c})

e—=0 ¢
1 .
:il_r:%gn({ﬁ €01 | ez —c-ea)})
is the marginal density of students pointed to by school b at the point & whose top
choice school in C'is c.

Let HC () be the |C| x |C| matrix with (b, c)th entry HC ()0 = %Hg'c (z) +
Ly—c (1 — %), where v, = Y0 HAC (x) is the row sum of H (z), and the normal-
ization T satisfies 7 > max, v..

Let M¢ (x) be the Markov chain with state space C, and transition probability
from state b to state ¢ equal to HC (). We remark that such a Markov chain exists,
since HY (z) is a (right) stochastic matrix for each pair C, .

We will also need the following definitions. For a matrix H and sets of indices
I, J we let Hr j denote the submatrix of H with rows indexed by elements of I and
columns indexed by elements of J. Recall that, by Assumption 1, the measure 7 is
defined by a probability density v that is right-continuous and piecewise Lipschitz
continuous with points of discontinuity on a finite grid. Let the finite grid be the set
of points {z | z; € D;Vi}, where the D; are finite subsets of [0, 1]. Then there exists a
partition R of [0, 1]C into hyperrectangles such that for each R € R and each face of
R, there exists an index ¢ and y; € D; such that the face is contained in {z | z; = y;}.

The following notion of continuity will be useful, given this grid-partition. We say
that a multivariate function f : R®™ — R is right-continuous if f (z) = lim,>, f (v),

where x,y are vectors in R™ and the inequalities hold coordinate-wise. For an m x n



matrix A, let 1 (A) be the m x n matrix with entries

1 if A #0,
0 if Ay =0.

1 <A>z'j =

We will also frequently make use of the following lemmas.

Lemma 2. Let v satisfy the marginal trade balance equations. Then ~ is Lipschitz

continuous.

Proof. By assumption, «y is normalized so that ||dzl—$)||1 =1 a.e., and so since 7 (-) is
monotonically decreasing, for all ¢ it holds that v, (-) has bounded derivative and is
Lipschitz with Lipschitz constant L.. It follows that - (+) is Lipschitz with Lipschitz

constant max, L.. O

Lemma 3. Let C C C be a set of schools, and let D be a region on which HC (x) is
irreducible for all x € D. For each x let A (x) be given by replacing the nth column of
HC (z)— Ic with the all ones vector 1.32 Then the function f (z) = [ of 1 } Az)~!

18 precewise Lipschitz continuous in x.

Proof. 1t suffices to show that the function which, for each z, outputs the matrix
A (x)"" is piecewise Lipschitz continuous in z.

Now

HYY (z) = lim ! v (0) do,
€208 Jo.r0>0 10 fayte-ep, c-0C

where v (+) is bounded below on its support and piecewise Lipschitz continuous, and
the points of discontinuity lie on the grid. Hence H, © (x) is Lipschitz continuous in
x for all b,c, and ), HAC (z) nonzero and hence bounded below, and so H® ().
is bounded above and piecewise Lipschitz continuous in z, and therefore so is A (z).
Finally, since HC (x) is an irreducible row stochastic matrix for each = € D), it follows
that A (z) is full rank and continuous. This is because when HC (z) is irreducible
every choice of n—1 columns of H¢ (x)— I gives an independent set whose span does
not contain the all ones vector 1. Therefore if we let A (x) be given by replacing
the nth column in HC (z) — I with 1¢, then A (z) has full rank.

Since A () is full rank and continuous, in each piece det (A (x)) is bounded away

from 0, and so A (x)f1 is piecewise Lipschitz continuous, as required. ]

32]¢ is the identity matrix with rows and columns indexed by the elements in C.



D.2 Connection to Continuous Time Markov Chains

In Section A.3, we appealed to a connection with Markov chain theory to provide a
method for solving for all the possible values of d(x). Specifically, we argued that
if K (z) is the set of recurrent communication classes of H (), then the set of valid
directions d () is identical to the set of convex combinations of {dK } Kek(a)? where
d” is the unique solution to the trade balance equations (1) restricted to K. We
present the relevant definitions, results and proofs here in full.

Let us first present some definitions from Markov chain theory.?® A square matrix
P is a right-stochastic matriz if all the entries are non-negative and each row sums to
1. A probability vector is a vector with non-negative entries that add up to 1. Given a
right-stochastic matrix P, the Markov chain with transition matriz P is the Markov
chain with state space equal to the column/row indices of P, and a probability P;; of
moving to state j in one time step, given that we start in state 7. Given two states i, j
of a Markov chain with transition matrix P, we say that states ¢ and j communicate
if there is a positive probability of moving to state ¢ to state j in finite time, and vice
versa.

For each Markov chain, there exists a unique decomposition of the state space
into a sequence of disjoint subsets C7,C5, ... such that for all 7,7, states ¢ and j
communicate if and only if they are in the same subset C} for some k. Each subset
C} is called a communication class of the Markov chain. A Markov chain is irreducible
if it only has one communication class. A state i is recurrent if, starting at ¢ and
following the transition matrix P, the probability of returning to state 7 is 1. A
communication class is recurrent if it contains a recurrent state.

The following proposition gives a characterization of the stationary distributions
of a Markov chain. We refer the reader to any standard stochastic processes textbook
(e.g. Karlin and Taylor (1975)) for a proof of this result.

Proposition 10. Suppose that P is the transition matriz of a Markov chain. Let
IC be the set of recurrent communication classes of the Markov chain with transition
matrix P. Then for each recurrent communication class K € K, the equation m = wP
has a unique solution ™ such that ||7¥|| = 1 and supp (7%) C K. Moreover, the

K

support of ™ is equal to K. In addition, if ||7|| = 1 and w is a solution to the

equation ™ = P, then w is a convex combination of the vectors in {WK}KEK.

33See standard texts such as Karlin and Taylor (1975) for a more complete treatment.



To make use of this proposition, define at each point x and for each set of schools
C a Markov chain MY (r) with transition matrix H¢ (z). We will relate the valid
directions d () to the recurrent communication classes of M (x), where C is the
set of available schools. We will need the following notation and definitions. Given a
vector v indexed by C, a matrix () with rows and columns indexed by C' and subsets
K, K' C C of the indices, we let v denote the restriction of v to the coordinates in
K, and we let Qg x denote the restriction of ) to rows indexed by K and columns
indexed by K.

The following lemma characterizes the recurrent communication classes of the
Markov chain M (x) using the properties of the matrix H¢ (z), and can be found

in any standard stochastic processes text.

Lemma 4. Let C be the set of available school at a point x. Then a set K C C is a
recurrent communication class of the Markov chain M€ (z) if and only if H () ke 1

is irreducible and H® () o\ 08 the zero matriz.
Proposition 10 and Lemma 4 allow us to characterize the valid directions d (z).

Theorem 4. Let C be the set of available schools, and let K (x) be the set of subsets
K C C for which f[céx)KK is irreducible and HC (%) g o\ i @8 the zero matriz. Then
the equation d = d - H® (x) has a unique solution d* that satisfies d* -1 = —1 and
supp (dK) C K, and its projection onto its support K has the form

(&) =07 -1 ] A% @)™,

where AS. (x) is the matriz obtained by replacing the (| K| — 1)th column of HC (T) g e —
I with the all ones vector 1.
Moreover, if d-1 = —1 and d is a solution to the equation d = d - HC (x), then

d is a convex combination of the vectors in {dK}Ke;C(x).

Proof. Proposition 4 shows that the sets K are precisely the recurrent sets of the
Markov chain with transition matrix H (). Hence uniqueness of the d¥ and the fact
that d is a convex combination of d¥ follow directly from Proposition 10. The form

of the solution d¥ follows from Theorem 5. O

This has the following interpretation. Suppose that there is a unique recurrent

communication class K, such as when 7 has full support. Then there is a unique

b}



infinitesimal continuum trading cycle of students, specified by the unique direction
d satisfying d = d - H (). Moreover, students in the cycle trade seats from every
school in K. Any school not in K is blocked from participating, since there is not
enough demand to fill the seats they are offering. When there are multiple recurrent
communication classes, each of the d® gives a unique infinitesimal trading cycle of
students, corresponding to those who trade seats in K. Moreover, these trading
cycles are disjoint. Hence the only multiplicity that remains is to decide the order,
or the relative rate, at which to clear these cycles. We will show in Section D.3 that,
as in the discrete setting, the order in which cycles are cleared does not affect the

final allocation.

D.3 Proof of Theorem 2

We first show that there exist solutions p, v, t to the marginal trade balance equations
and capacity equations. The proof relies on selecting appropriate valid directions
d (x) and then invoking the Picard-Lindel6f theorem to show existence.

Specifically, let C' be the set of available schools, fix a point x, and consider the set
of vectors d such that d - H® (z) = d. Then it follows from Theorem 4 that if d (z)
is the valid direction from z with minimal support under the shortlex order, then
d(z) = d¥@ for the element K (z) € K (z) that is the smallest under the shortlex
ordering. As the density v () defining 7 (-) is Lipschitz continuous, it follows that
K () and K (-) are piecewise constant. Hence we may invoke Lemma 3 to conclude
that d(-) is piecewise Lipschitz within each piece, and hence piecewize Lipschitz in
[0, 1]¢.Since d(-) is piecewise Lipschitz, it follows from the Picard-Lindelsf theorem
that there exists a unique function ~ (+) satisfying dzl—(tt) =d(vy(t)). It follows trivially
that ~ satisfies the marginal trade balance equations, and since we have assumed
that all students find all schools acceptable and there are more students than seats

it follows that there exist runout times ¢(©) and cutoffs p§.

Proof of Uniqueness

In this section, we prove part (ii) of Theorem 2, that any two valid TTC paths give
equivalent allocations. The intuition for the result is the following. The connection to
Markov chains shows that having multiple possible valid direction in the continuum

is parallel to having multiple possible trade cycles in the discrete model. Hence



the only multiplicity in choosing valid TTC directions is whether to implement one
set of trades before the others, or to implement them in parallel at various relative
rates. We can show that the set of cycles is independent of the order in which cycles
are selected, or equivalently that the sets of students who trade with each other is
independent of the order in which possible trades are executed. It follows that any
pair of valid TTC paths give the same final allocation.

We remark that the crux of the argument is similar to what shows that discrete
TTC gives a unique allocation. However, the lack of discrete cycles and the ability
to implement sets of trades in parallel both complicate the argument and lead to a
rather technical proof.

We first formally define cycles in the continuum setting, and a partial order over
the cycles corresponding to the order in which cycles can be cleared under TTC. We
then define the set of cycles X () associated with a valid TTC path v. Finally, we
show that the sets of cycles associated with two valid TTC paths v and «/ are the
same, X () = 2 (7).

Definition 3. A (continuum) cycle o = (K,z,7) is a set K C C and a pair of
vectors z < T in [0,1]°. The cycle o is valid for available schools {C ()} e if
K € K@ (2)Vr € (z,7].

Intuitively, a cycle is defined by two time points in a run of TTC, which gives a
set of students,?* and the set of schools they most desire. A cycle is valid if the set of
schools involved is a recurrent communication class of the associated Markov chains.
We say that a cycle o = (K, z,T) appears at time t in TTC () if K € KCO®) (v (2))
and 7. (t) = T, for all c € K. We say that a student 0 is in cycle o if ¥ € (x,7]*,

and a school ¢ is in cycle o if c € K.

Definition 4 (Partial order over cycles). The cycle 0 = (K, z,T) blocks the cycle
o' = (K',2',7'), denoted by o > ¢, if at least one of the following hold:
(Blocking student) There exists a student 6 in ¢’ who prefers a school in K to all
those in K', that is, there exists # and ¢ € K \ K’ such that ¢ =% ¢ for all ¢ € K'.
(Blocking school) There exists a school in ¢’ that prefers a positive measure of stu-

dents in o to all those in o, that is, there exists ¢ € K’ such thatn (6|6 in o, ¢ > 7)) >

34The set of students is given by taking the difference between two nested hyperrectangles, one
with upper coordinate T and the other with upper coordinate x.
35Recall that since 7%, z and Z are vectors, this is equivalent to saying that r? £ z and r? < 7.



0.5

Let us now define the set of cycles associated with a run of TTC. We begin with
some observations about H2'¢ (-) and HC (+)pe- For all b, c € C the function H° (+)
is right-continuous on |0, 1]6, Lipschitz continuous on R for all R € R and uniformly

bounded away from zero on its support. Hence 1 (HS'C ()) is constant on R for all

R € R. It follows that H® (+)pe 1s also right-continuous, and Lipschitz continuous on
R for all R € R. Moreover, there exists some finite rectangular subpartition R’ of R
such that for all C C C the function 1 (f[c ()) is constant on R for all R € R'.

Definition 5. The partition R’ is the minimal rectangular subpartition of R such
that for all C' C C the function 1 (]:IC ()) is constant on R for all R € R'.

For z € [0,1]° and C' C C, let K€ (z) be the recurrent communication classes of the
Markov chain MY (z). The following lemma follows immediately from Proposition

4, since 1 (]:.7 ¢ ()> is constant on R VR € R/, and recurrent communication classes

depend only on 1 <[§Tc)
Lemma 5. K¢ (-) is constant on R for every R € R'.

For each K € KC (z), let d¥ (z) be the unique vector satisfying d = dHC (),
which exists by Theorem 4.

Let v be a TTC path, and assume that the schools are indexed such that for all
x there exists ¢ such that C (z) = C¥ wf {¢,0+1,...,|C|}. For each set of schools
K C C, let T (K,~) be the set of times 7 such that C (v (7)) = C) and K is a
recurrent communication class for H” (v (7)). Since 7 is continuous and weakly
decreasing,it follows from Lemma (5) that 7 (K, ) is the finite disjoint union of
intervals of the form [t, f). Let Z (T@) (K, 7)) denote the set of intervals in this
disjoint union. We may assume that for each interval T', v (T') is contained in some
hyperrectangle R € R'.37

For a time interval T = [t,7) € Z (T (K,v)), we define the cycle o (T) =
(K,z(T),z(T)) as follows. Intuitively, we want to define it simply as o (T) =
(K Y (), (Z)), but in order to minimize the dependence on ~, we define the end-

points z (T') and T (T') of the interval of ranks to be as close together as possible,

36We note that it is necessary but not sufficient that z. > 7.
37This is without loss of generality, since if v (T') is not contained we can simply partition 7 into
a finite number of intervals Uger/v=* (v (T') N R), each contained in a hyperrectangle in R’.
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while still describing the same set of students (up to a set of n-measure 0). Define

z(T) = max{x:fy(z)gxg'y(t),n(e:Chg(C(g))EK, rae(x,’y(f)}):O},
T(T) = min{z:v(t)<a<y(@):n(0: Chy(CY) e K, 1’ € (v(t),2]) =0},

to be the points chosen to be maximal and minimal respectively such that the set
of students allocated by =~ during the time interval T" has the same n-measure as if
v(t) =z (r) and v (f) = Z (7). In other words

N ((Ueer T () \TE(1:8)) \ {0 : Che (CY) € K, ¥ € (x(T),Z(T)]}) = 0.

In a slight abuse of notation, if o0 = o (T') we will let x (o) denote z (T') and T (o)
denote 7 (7).

Definition 6. The set of cycles cleared by TTC () in round ¢, denoted by X (),

is given by
2O (y) = U .

KCC® 1ez(TO(K 1))

The set of cycles cleared by TTC (), denoted by 3 (7), is the set of cycles cleared
by TTC () in some round ¢,

() =Y.

14

For any cycle o € X () and time 7 we say that the cycle o is clearing at time T
if v(1) £ (o) and v (7) # T (o). We say that the cycle o is cleared at time T or
finishes clearing at time 7 if ¥ (1) < z () with at least one equality. We remark
that for any TTC path v there may be multiple cycles clearing at a time 7, each
corresponding to a different recurrent set. For any TTC path 7 the set X () is finite.

Fix two TTC paths v and +'. Our goal is to show that they clear the same sets of
cycles, ¥ (v) = X (), or equivalently that X (y)UX (7)) = X (v)NE (7). We will do
this by showing that for every cycle o € ¥ () U X (7/), if all cycles in ¥ () U X (/)
that block o are in X (v) N X (7'), then o € X () N3 (7). We first show that this is
true in a special case, which can be understood intuitively as the case when the cycle

o appears during the run of 7T'C' () and also appears during the run of TTC (/).

Lemma 6. Let £ = (C,0,n,q) be a continuum economy, and let v and v be two
TTC paths for this economy. Let K C C and t be such that at time t, v (v') has

9



available schools C' (C"), the paths ~,~" are at the same point when projected onto
the coordinates K, i.e. v (t); = v (t);, and K is a recurrent communication class
of MC (v (t)) and of M (v (t)). Suppose that for all schools ¢ € K and cycles
o' > o involving school ¢, if o' € ¥ (v), then o' is cleared in TTC ('), and vice
versa. Suppose also that cycle o = (K, z,T) is cleared in TTC (), v (t) = z, and at
most measure 0 of o has been cleared by time t in TTC (7). Then o is also cleared
in TTC ().

Proof. We define the ‘interior’ of the cyclec by X ={z : 2. <z.<Z.Ve € K, xo >
2.V ¢ K}. Fix a time u such that 7/ (u) € X and let D’ denote the set of available
schools at time w in TT'C (v'). Then we claim that K is a recurrent communication
class of MP" (v (u)), and that a similar result is true for v and a similarly defined
D. The claim for v, D follows from the fact that o is cleared in TTC (), 0 € X (7).
It remains to show that the claim for 4/, D" is true. Intuitively, D’ is some subset of
C’, where the schools in the set C’\ D" only every point to K and are never pointed
to by K and so the cycle remains intact. Formally, by Lemma 4 it suffices to show
that H' () g i 1s irreducible and HY () k. pn s 18 the zero matrix.

We first examine the differences between the matrices HS (v (¢)) and H?" (7' (u)).

Since K is a recurrent communication class of M (7' (u)), it holds that 1 ( H" (7' (u)) KoK ) =
0, and so since K C D" C (" it follows that 1 <HD' (' (u))K,D’\K> = 0. Moreover,

since 1 <HC/ (' (u))K,C\K> = 0, all students’ top choice schools out of C" or D’ are
the same (in K), and so HY (v () g x = HP (v (u)) i and both matrices are
irreducible. Hence K is a recurrent communication class of MP" (7' (u)).

We now invoke Theorem 4 to show that in each of the two paths, all the students
in the cycle o clear with each other. In other words, there exists a time 7 such
that v(7) = Z.Vc € K, and similarly there exists a time 7" such that ' (7), =
T.Vc € K. Specifically, while the path 7 is in the ‘interior’ of the cycle, that is
v(7) € X, it follows from Theorem 4 that the projection of the gradient of v to K
is a rescaling of some vector d¥ (v (7)), where d* (-) depends on H (-) but not on 7.
Similarly, while 4/ (7') € X, it holds that the projection of the gradient of ' to K
is a rescaling of the vector d* (7 (7')), for the same function d¥ (-). Hence if we let
7k (z) denote the projection of a vector x to the coordinates indexed by schools in
K, then mc (v (v ((2,7]))) = 7 (v (V7" (2, 7])))-

Recall that we have assumed that for all schools ¢ € K and cycles ¢’ > ¢ involving

10



school ¢, if ¢’ € ¥ (7), then ¢’ is cleared in TTC ('), and vice versa. This implies
that for all ¢ € K, the measure of students assigned to ¢ in time [0, ¢] under T7'C ()
is the same as the measure of students assigned to ¢ in time [0,¢] under T7C (/).
Moreover, we have just shown that for any z € v (v~ ((z, 7)), 2’ € v (v ((z,T]))
such that 25 = 2/ , if we let 7 =~~' (2) and 7/ = (v/)" (/) then the same measure
of students are assigned to c¢ in time [t, 7] under T7°C () as in time [t, 7] under
TTC (7). Since TTC () clears o the moment it exits the interior of o, this implies
that TTC (7') also clears ¢ the moment it exits the interior. O

We are now ready to prove that the TTC allocation is unique. As the proof takes

several steps, we separate it into several smaller claims for readability.

Proof of uniqueness. Let v and ' be two TTC paths, and let the sets of cycles
associated with TTC (v) and TTC (7') be ¥ = X (y) and ¥’ = 3 (v') respectively.
We will show that ¥ = Y.

Let o0 = (K,z,T) be a cycle in ¥ U X' such that the following assumption holds:

Assumption 2. For all 6 > o it holds that either ¢ is in both ¥ and X' or ¢ is in

neither.

We show that if o is in ¥ U X/ then it is in ¥ N Y. Since ¥ and Y are finite sets,
this will be sufficient to show that 3 = >’. Without loss of generality we may assume
that o € 3.

We give here an overview of the proof. Let ¥., = {6 € ¥ : ¢ > 0} denote the set
of cycles that are comparable to o and cleared before o in TT'C' (). Assumption (2)
about o implies that ., C ¥'. We will show that this implies that no students in o
start clearing under 77'C' () until all the students in ¢ have the same top available
school in TTC (v') as when they clear in TT'C (), or in other words, that if some
students in o start clearing under TT'C (7) at time ¢, then the cycle o appears at
time t. We will then show that once some of the students in o start clearing under
TTC (v') then all of them start clearing. It then follows from Lemma 6 that o clears
under both TT'C () and TTC (v).

Let ¢ denote the round of TTC (v) in which o is cleared, C (z) = C¥ Vo € 0. We

11



define the times in TTC (y) and TTC (v') when all the cycles in X, are cleared, by

tre = min {t : y(t) < (z) for all 5 = (f(,i, (%)) € 3p, and H (v (t)) # 0},
t_, = min {t A (1) < (z) for all 5 = <l~(,@, (%)) € Xeoand H (7 (t)) # 0}.

We define also the times in TT'C () when o starts to be cleared and finishes
clearing,

t,=max{t : y(t) > 7T}, to, =min{t : v(t) <z}

Zo

and similarly define the times t/ = max{t : 7' (t) > 7}, {, = min{t : v (t) < z} for
TTC ().

We remark that part of the issue, carried over from the discrete setting, is that
these times f., and ¢, might not match up, and similarly for t'., and t’ ,- In partic-
ular, other incomparable cycles could clear at interwoven times. In the continuum
model, there may also be sections on the TT'C' curve at which no school is pointing
to a positive density of students. However, all the issues in the continuum case can
be addressed using the intuition from the discrete case.

We first show in Claims (1), (2) and (3) that in both TT'C () and TTC (v'), after
all the cycles in X, are cleared and before o starts to be cleared, the schools pointed
to by students in o and the students pointed to by schools in K remain constant (up

to a set of n-measure 0).

Claim 1. Let 0 = (K,x,T) € ¥ satisfy Assumption 2. Suppose there is a school ¢
that some student in o prefers to all the schools in K. Then school ¢ is unavailable
in TTC (v) at any time t > Ty, and unavailable in TTC (7') at any time t > 7.

Proof. Suppose that school ¢ is available in TT'C' () after all the cycles in ¥, are
cleared. Then there exists a cycle & clearing at time t € (fw, ﬁa) in TTC (v) involving
school ¢. But this means that ¢ > o so ¢ € Y.,, which is a contradiction. Hence
the measure of students in Y., who are assigned to school ¢ is ¢., and the claim
follows. ]

Claim 2. In TTC (), let © denote the set of students cleared in time [fw,zg) who

are preferred by some school in ¢ € K to the students in o, that is, 6 satisfying
r® > T, Thenn <(:)> =0.
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Proof. Suppose n (é) > 0. Then, since there are a finite number of cycles in 3 (v),

there exists some cycle & = (f( .z, (%)) € X () containing a positive n-measure of
students in ©. We show that & is cleared before . Since & contains a positive 7-
measure of students in ©, it holds that there exist ¢1,ty € [z_fw, io) and a school c € K
for which Z, < v (t1), < v (t2), < (%)C Hence T, < v (t,), < 7 (t1), < 7 (t2), < Ze, 50
g > o as claimed. But (i)c <y (t1), <7 (t2), <7 (fs0), 50 G is not cleared before

ts, contradicting the definition of 7. O

Claim 3. In TTC (), let O denote the set of students cleared in time [Z/ t’) who

>o) Zo

are preferred by some school in ¢ € K to the students in o, that is, 0 satisfying

r’ > 7Z.. Thenn (é) =0.

Proof. Suppose n (é) > (0. Then, since there are a finite number of cycles in 3 (v/),
there exists some cycle & = <K I, (%)) € ¥ (7') containing a positive n-measure
of students in ©. We show that & is cleared before o. Since G contains a positive
n-measure of students in ©, it holds that there exist t1,t, € [E;mﬁ;) for which
i, <9 (h), <7 (t), < (@), Hence T, <7/ (t,), <7 (1), < ¥ (t), < TeSO G > 0
and must be cleared before 0. Moreover, (i)c <A (t1), <7 (ta), < (fl;g) , 80 it
follows from the definition of 7_ that & & Y., but since we assumed that &CE ¥ it

follows that ¢ € 3\ 3, contradicting assumption (2) on o. O

We now show in Claims (4) and (5) that in both T7T'C () and TTC (v') the cycle
o starts clearing when students in the cycle o start clearing. We formalize this in
the continuum model by considering the coordinates of the paths ~,~" at the time
t, when the cycle o starts clearing, and showing that, for all coordinates indexed by

schools in K, this is equal to 7.

Claim 4. g (v (t,)) = 7k (T).

Proof. The definition of ¢, implies that v (¢,). > Z. for all ¢ € K. Suppose there
exists ¢ € K such that v(¢,), > T.. Since o starts clearing at time ¢, for all
€ > 0 school ¢ must point to a non-zero measure of students in ¢ over the time
period [t,, 1, + €], whose scores r? satisfy v (¢,), > ! > v (t, +¢€),. For sufficiently

small ¢ the continuity of v (-) and the assumption that v (t,), > 7. implies that
r? >~ (t, +¢), > T. , which contradicts the definition of Z,. O
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Claim 5. 7 (7' (L)) = 7k (T).

As in the proof of Claim (4), the definition of ¢, implies that 7/ (¢), > . = v (¢,)
for all ¢ € K. Since we cannot assume that o is the cycle that is being cleared at
time ¢t/ in TTC (v'), the proof of Claim (5) is more complicated than that of the

Claim (4) and takes several steps.

c

We rely on the fact that K is a recurrent communication class in T7'C (), and
that all cycles comparable to ¢ are already cleared in TT'C (7). The underlying
concept is very simple in the discrete model, but is complicated in the continuum by
the definition of the TT'C path in terms of specific points, as opposed to measures of
students, and the need to account for sets of students of n-measure 0.

Let K_ be the set of coordinates in K at which equality holds, ' (t.),. = v (¢,).,
and let K- be the set of coordinates in K where strict inequality holds, 7' (¢,), >
v (t,),.. It suffices to show that K. is empty. We do this by showing that under
TTC (v') at time t/, every school in K- points to a zero density of students, and
some school in K_ points to a non-zero density of students, and so if both sets are
non-empty this contradicts the marginal trade balance equations. In what follows,
let C' denote the set of available schools in TT'C' () at time ¢, and let C’ denote the
set of available schools in TTC' (') at time ¢, .

Claim 6. Suppose that ¢ € K. Then there exists ¢ > 0 such that in TTC (v'),
the set of students pointed to by school ¢ in time [t.,t. + €] has n-measure 0, i.e
HC ( ( ))cb = 0.

Proof. Since ¢ € K. it holds that 7/ (t)). > Z., and since 7' is continuous, for
sufficiently small ¢ it holds that 7' (¢, +¢), > Z.. Hence the set of students that
school ¢ points to in time [, ¢, + ¢ is a subset of those with score r? satisfying
v (L), > r? >+t +¢), > T.. By assumption (2) and Claim (3) any cycle &
clearing some of these students contains at most measure 0 of them, since ¢ is cleared
after X, and before o. Since there is a finite number of such cycles the set of students

has n-measure 0. O

Claim 7. If c€ K_, be K and HC (v (¢ o)) >0, then HE' (v (¢! ")) > 0.

Proof. Since every HC (v (£.)) « 18 a positive multiple of H, 2O (y (t)), it suffices
to show that HJ (v (t)) > 0. Let X (¢) ) (v (t'y) —€-e,v ('s)]. We first
show that for sufficiently small ¢ it holds that n’/® (X (g)) = Q(e). Let X_ () = X
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(v (t,) — - €%~ (t,)]. Since HC (v (t,)) 4 > 0, it follows from the definition of H° (+)
that HJC (z) = lim.,0 17! (S ()) > 0 and hence 7”1 (X_ ()) = Q () for suffi-
ciently small €. Moreover, at most n-measure 0 of the students in ¥_ (¢) are not in
the cycle . Finally, ¥’ (¢) D ¥_ () \ ¥4 (¢), where X, (¢) 24 (7 (ts) + € e, (ts)]-
If ¢ < Z. — x,. then n-measure 0 of the students in ¥, (¢) are not cleared by cycle o.
Hence 1€ (3 (2)) > € (2 (€)) — 1 (24 () = Q(e).

Suppose for the sake of contradiction that H2< (7' (£,)) = lim._ I (27 (e)) =
0, so that n!I (X' (¢)) = o (e) for sufficiently small e. Then there is a school &' # b
and type 0 € @Y1 NOYIY" such that there is an n-measure Q (¢) of students in o with
type 6. Since b’ € C it is available in TT'C (v') at time ¢/, and by Claim (1) it holds
that o’ € K . Moreover, 6 € % implies that 6 prefers school b to all other schools

in K, so b =1, contradiction. ]

Proof of Claim (5). Suppose for the sake of contradiction that K. is nonempty.
Since some students in o are being cleared in TTC (') at time ¢/, by Claim (3)
there exists c € K = K_ U K- and b € K such that HS' (v/ )y >0. Ifce Ko
this contradicts Claim (6). If ¢ € K_, then H” (y(t,)), > 0 and so by Claim
(1) HC (v (t,))p > 0. Moreover, K = K_ U K. is a recurrent communication
class of HY (v (t,)), so there exists a chain ¢ = ¢y — ¢; — ¢3 — +-- — ¢, such that
HC (v (to))eser,, > O foralli <n, ¢; € K- foralli <n-—1,and ¢, 1 € K. By
Claim (7) H' (7' (t1))

= CiCi+1

> 0 for all i < n. But since ¢,—1 € K-, by Claim (6)
HY (v (t.)) = 0, which gives the required contradiction. O
0//Cn—1Cn

Proof that ¥ = ¥’. We have shown in Claims (4) and (5) that for our chosen
o = (K,z,7), it holds that v (t,);, = 7 (t,)x = zx. Invoking Claims (2) and (3)
and Lemma 6 shows that o is cleared under both TTC (y) and TTC (v'). Hence
Y =Y/, as required. ]

D.4 Proof of Proposition 2

In this section, we show that given a discrete economy, the cutoffs of TTC in a

continuum embedding ® give the same assignment as TTC on the discrete model,
parre (s | E) = max {c : r; > p; for some b} = porre (6° | P (F)) VO° € I°.
The intuition behind this result is that TTC is essentially performing the same
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assignments in both models, with discrete TTC assigning students to schools in
discrete steps, and continuum TTC assigning students to schools continuously, in
fractional amounts. By considering the progression of continuum TTC at the discrete
time steps when individual students are fully assigned, we obtain the same outcome
as discrete T'TC.

Proof. For a discrete economy E = (C,S,>¢,>=",q) with N = |S]| students, we
define the continuum economy @ (E) = (C,0,7n, ) as follows. For each student
s € § and school ¢ € C, recall that r$ = |{s' | s . '} /|S] is the percentile rank
of s at c. We identify each student s € & with the N-dimensional cube I® =>*
X [Teec [7‘5, TS+ %) of student types, and define 1 to have constant density % - NN
on U,I® and 0 everywhere else.

We construct a discrete cycle selection rule v and TTC path ~ such that TTC
on the discrete economy E with cycle selection rule i gives the same allocation as
TTC (7). Since the assignment of discrete TTC is unique (Shapley and Scarf, 1974),
and the assignment in the continuum model is unique (Proposition 2), this proves
the theorem.

The discrete cycle selection rule v is defined by taking all available cycles in the
pointing graph obtained by having students point to their favorite school, and schools
to their favorite student. The TTC path ~ is defined by taking valid directions d (x)
that essentially use all available cycles in the pointing graph. Formally, at each point
x, let C be the set of available schools, let K (x) be the set of all students in recurrent
communication classes of H (z), and let d, (z) = m if c € K and 0 otherwise.

Let X be the set of points x such that z. is a multiple of ]%, for all ¢ ¢ K (x); we
will show that the TTC path stays within this set of points. Note that for each x
the matrix N x H (x) is the adjacency matrix of the pointing graph (where school b
points to school ¢ if some student pointed to by b wants ¢), and so d (z) = d (z)- H (z)
for all x € X. Now consider the TTC path v satisfying 7' (t) = d (v (t)). The path
starts at v (0) = 1 € X. Moreover, at any time ¢, if v (¢) € X then v/ (t) = d (v (t))
points along the diagonal in the projection onto the coordinates K, and is 0 along
all other coordinates. Hence v (t) € X for all .

We now show that by considering the progression of continuum TTC at the dis-
crete time steps when individual students are fully assigned, we obtain the same cycles
and outcome as discrete TTC. Let ¢4, to, . . . be the discrete set of times when a student
s is first fully assigned, that is {t;} = U, {inf {t |3c € C s.t. 7. (t) <r? VO € I*}}.
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For every two students s, s’ and school ¢ it holds that the projections I* and I*" of I°
and I* onto the cth coordinates are non-overlapping, i.e. either for all § € I°,¢' € I¥
it holds that r? < r? or for all § € I°,6' € I* it holds that r? > r?,. Since all the
capacities are multiples of %, it follows that . (¢;) is a multiple of % for all ¢,7 and
schools fill at a subset of the set of times {t;}.

In other words, we have shown that for every 4, if S is the set students who
are allocated a seat at time t;, then S U u (S) are the agents in the maximal union
of cycles in the pointing graph at time ¢;_;. Hence v finishes clearing the cubes
corresponding to the same set of cycles at ¢; as ¢ clears in step ¢. It follows that
tarre (s | E) = perre (0° | @ (E)), and by definition it holds that p.rre (0°| P (E)) =

max, s {c¢ : r > p§ for some b}. O

D.5 Proof of Theorem 3

To prove Theorem 3, we will want some way of comparing two TTC paths v and 7

obtained under two continuum economies differing only in their measures 1 and 7.

Definition 7. Let v and 5 be increasing continuous functions from [0,1] to [0, 1]

with v (0) =4 (0). We say that v (1) dominates ¥ (1) via school c if

Ve (T) = Ae(r), and
Ww(T) < A (r) forallbelC.

We remark that, somewhat unintuitively, the condition 7 (7) < 4 (7) implies
that more students are offered seats under ~ than 4/, since higher ranks give more
restrictive sets. We also say that v dominates ¥ via school ¢ at time 7. If v and
~" are TTC paths, we can interpret this as school ¢ being more demanded under ~,
since with the same rank at ¢, in v students are competitive with more ranks at other
schools b.

We now show that any two non-increasing continuous paths v, + starting and
ending at the same point can be re-parametrized so that for all ¢ there exists a school
¢ (7) such that v dominates 7' via school ¢(7) at time ¢. We first show that, if
7 (0) < 4(0), then there exists a re-parametrization of  such that v dominates 4" on

some interval starting at 0.
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Lemma 7. Suppose v, 3 are a pair of non-increasing functions [0,1] — [0,1] such
that v(0) < 4(0). Then there exist coordinates ¢,b, a time t and an increasing
function g : R — R such that v, (g (1_5)) =Y ( ), and for all T € [O t} 1t holds that

Ve (9 (7)) = e (7) and v (g (7)) <7 (7).

That is, if we renormalize the time parameter 7 of (1) so that v and 4 agree
along the cth coordinate, then v dominates 7 via school ¢ at all times 7 € [O, ﬂ, and

also dominates via school b at time ¢.

Proof. The idea is that if we take the smallest function g such that . (g (1)) = 7. (1)
for some coordinate ¢ and all 7 sufficiently small, then v (g (7)) < F(7) for all 7
sufficiently small. The lemma then follows from continuity. We make this precise.

Fix a coordinate c. Let ¢(® be the renormalization of ¥ so that v and 4 agree
along the cth coordinate, i.e. 7. (9! ( )) = e (1) for all 7.

For all 7, we define the set /€(> = {b|w% (9" (1)) >3 (1)} of schools b along
which the v curve renormalized along coordmate ¢ has larger b-value at time 7 than 7,
has at time 7, and similarly define the set £ (1) = {b|v, (99 (7)) = 7 (7) } Where
the renormalized v curve is equal to 7. It sufﬁces to show that there exists b, c and
a time 7 such that £ (7) = 0 for all 7 € [0,7] and b € &9 (7).

Since v and 7 are continuous, there exists some maximal 79 > 0 such that the

functions £\ (-) and 9 () are constant over the interval (O,Z(C)>. If there exists ¢

such that /€(>C) (1) =0 for all T € (O Z(C)) then by continuity there exists some time

t < 79 and school b such that b € K ( ) and we are done. Hence we may assume
that for all c it holds that /<J>C) (1) = C’(> forall 7 € <0, 7 ) for some fixed non-empty

set C’(>C). We will show that this leads to a contradiction.

We first claim that if b € C'9 then ¢® (7) > ¢© (7) for all T € (0,¢). This
is because 7 is increasing and v, (9% (7)) = 7 (1) > % (¢'9 (7)) for all 7 € (0,7),
where the equality follows from the definition of ¢ and the inequality since b € C'(>C)
But this completes the proof, since it implies that for all ¢ there exists b such that
g® (1) > ¢ (1) for all 7 € (0,%), which is impossible since there are a finite number
of schools ¢ € C. 0

We are now ready to show that there exists a re-parametrization of v such that

~ always dominates 4 via some school.
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Lemma 8. Suppose t > 0 and v, 7 are a pair of non-increasing functions [O,ﬂ —
[0,1° such that v (0) < 7 (0) = 1 with equality on at least one coordinate, and
0 =7(1) < 7(1) with equality on at least one coordinate. Then there exists an
increasing function g : [O,ﬂ — R such that for all 7 > 0, there ezists a school ¢ (T)
such that vy (g (1)) dominates 7 (1) via school ¢ ().

Proof. Without loss of generality let us assume that ¢ = 1. Fix a coordinate c. We de-
fine ¢ to be the renormalization of 7 so that v and 7 agree along the cth coordinate.
Formally, let ¢ = min {7 |y, (0) > 7. (1)} and define ¢'°) so that 7. (¢ (7)) = 7. (1)
for all 7 € [t9,1]. Let A be the set of times 7 such that v (¢ (7)) dominates
4 (7). The idea is to pick g to be equal to ¢© in A©. In order to do this formally, we
need to show that the sets A cover [0, 1], and then turn (a suitable subset of ) A
into a union of disjoint closed intervals, on each of which we can define g(-) =¢© (-).

We first show that U.A) = [0,1]. Suppose not, so there exists some time 7 such
that for all ¢ such that 7 > ¢(9) there exists b such that v, (¢ (7)) > 45 (7). This
implies that 4, (1) < v, (0), and so there exists g (1) such that 5, (1) = 7 (¢ (7)).
Since 7 is increasing, this implies that for all ¢ such that 7 > t(¢) there exists b such
that ¢ (1) < g® (7), which is a contradiction since the set of such schools is finite
but non-empty (since y(0) < 4 (0) = 1, with equality on at least one coordinate).

We now turn (a suitable subset of A(®)) into a union of disjoint closed intervals.
By continuity, A is closed. Consider the closure of the interior of A(), which we
denote by B, Since the interior of A(© is open, it is a countable union of open
intervals, and hence B is a countable union of disjoint closed intervals. To show
that U.ec B9 = [0, 1], fix a time 7 € [0,1]. As U.A) = [0, 1], there exists ¢ such that
v (9" (1)) < 7 (7). Hence we may invoke Lemma 7 to show that there exists some
school b, time 7 > 7 and an increasing function g such that v, (g (¢ (7)) = % (7')
and v (g (99 (7)) < 7 (') for all 7/ € [r,7]. But by the definition of g (-) this
means that -, (g (g(c) (T’))) =% () =% (g(b) (T’)) for all 7/ € [r,7], and so gog® =
g® and we have shown that [r,7] C B®). Hence we may write [0,1] = U,{T},} as a
countable union of closed intervals such that any pair of intervals intersects at most
at their endpoints, and each interval T}, is a subset of B for some ¢. For each T},
fix some ¢(n) = ¢ so that T,, C B(). Intuitively, this means that at any time 7 € T},
it holds that v (¢*™) (7)) dominates 7 (1) via school ¢ (n).

We now construct a function g that satisfies the required properties as follows.
If 7 €T, C B let g(r) = ¢ (7). Now g is well-defined despite the possibility
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that T,, N T,, # 0. This is because if 7 is in two different intervals T},,T},, then
Yem) (9 (7)) = Fetm) (T) = Ve (9™ (7)) (by domination via ¢ (n) and ¢ (m)
respectively), and Yegn) (9“0 (7)) = Fetm) (T) = Yem) (¢ (7)) (by domination
via ¢(m) and c(n) respectively), and so g(™) (1) < ¢glt™) (1) < ¢(¢™) (1) and we
can pick one value for g that satisfies all required properties. Now by definition
v (g (7)) dominates 7 (7) via school ¢ (7) = ¢(n), and moreover g is defined on all of
[0,1] since Uee B® = [0, 1]. This completes the proof. O

Consider two continuum economies £ = (C,0,n,q) and € = (C, 0,17, q), where
the measures n and 7 satisfy the assumptions given in Section 3. Suppose also that
the measure 1 and 7 have total variation distance € and have full support. Let v be
a TTC path for economy &, and let 4 be a TTC path for economy £ . Consider any
school ¢ and any points © € Im(y), £ € Im (%) such that z. = Z., and both are
cleared in the first round of their respective TTC runs, C (z|y) =C, C (c|y) = C. We
show that the set of students allocated to school ¢ when running T7°C' () up to x
differs from the set of students allocated to school ¢ when running 77C' (¥) up to &
by a set of measure O(g|C]).

Proposition 11. Suppose that v, ¥ are TTC paths in one round of the continuum
economies € and E respectively, where the set of available schools C' is the same in
these rounds of TTC (v) and TTC (v'). Suppose also that y starts and ends at z,y
and v starts and ends at ,1y, where there exist b,c € C' such that xy, = Ty, Y. = Ye,
and Tq < Ta, Yo < Yo for all a € C. Then for all ¢ € C, the set of students with ranks
in (y,x] under & and ranks in (§j,z] under & who are assigned to ¢ under TTC (v)
and not under TTC (%) has measure O (]C|).®

Proof. By Lemma 8, we may assume without loss of generality that v and 4 are
parametrized such that z = 7 (0),y = v(1) and Z = 5(0),5 = 7(1), and for all
times 7 < 1 there exists a school ¢(7) such that v (7) dominates ¥ (1) via school
c(7).

Let T. = {r <1 : ¢(7) = ¢} be the times when v dominates 4 via school c.
We remark that, by our construction in Lemma 8, we may assume that 7, is the
countable union of disjoint closed intervals, and that if ¢ # ¢’ then T, and T, have

disjoint interiors.

38This is according to both measures 1 and 7.
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Since 7 is a TTC path for £ and 7 is a TTC path for £, by integrating over
the marginal trade balance equations we can show that the following trade balance

equations hold,

n(Te(v;T.) = n(T9(%;T.)) forall c € C. (4)
W (T.(%:T.) = 7(T99(3%;T.)) forallceC. (5)

Since v dominates 7 via school b at all times 7 € T}, we have that
To(v;Ty) C To(¥;Th). (6)
Moreover, by the choice of parametrization, U,T}, = [0, 1] and so, since z < Z,
Up T (v, Ty) 2 U T (35 Th) - (7)

Now since 71, have total variation e, for every school ¢ it holds that

n (T (i THO\NT (1)) < n (T T)) =0 (T99 (% T2)) + e (by (7))
= n(Te(v 1) —n(T. (3 T.)) + € (by (4) and (5))
< 2 (by (6)), (8)

Also, for all schools b # ¢, since i has full support, it holds that

n (T T\ T (4 T)) < %n (T (s T\ T (3 T3)) - ()

Hence, as Tj, have disjoint interiors,

n (T (; )\ T (151)) = Z (T (v Th)) = (T (3% T,)) (by (7))

beC

< ZU (TC|C (v Ty) \ 799 (%; T;))

beC

> %n (T (v; T) \ TC (3: 1)) (by (9))

beC

A0 (by (8)).

IN

IN
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That is, given a school ¢, the set of students assigned to school ¢ with score
r? £ x under v and not assigned to school ¢ with score 7’ £ & under 4 has n-measure
O (¢|C]). The result for 77 follows from the fact that the total variation distance of 7
and 7 is €. O

We are now ready to prove Theorem 3.

Proof of Theorem 3. Assume without loss of generality that the schools are indexed
such that the stopping times t(© for TTC (v) satisfy t1) < ¢ < ... < (€D je,
school ¢ is the ¢th school to reach capacity under TT'C (7). Let o be a permutation
such that the stopping times () for TTC (7) satisfy W) < ... < @) We show
by induction on ¢ that ¢ (¢) = ¢ and that for all schools ¢, the set of students assigned
to ¢ under TTC () by time ) and not under TTC (7) by time t"*)) has n-measure
O (e|C|). This will prove the theorem.

We first consider the base case { = 1. Let = = £ = v(0) and y = v (t(l)).
Define § € Im (%) to be the minimal point such that y < ¢ and there exists ¢ such
that y. = ge. We show that § is near 7(tW), ie. |§—7 (E(l))|2 = O (g). Now
by Proposition 11 the set of students with ranks in (y,~ (0)] under £ and ranks in
(7,7 (0)] under £ who are assigned to 1 under TTC () and not under TTC (7) has
n-measure O (e |C|). Hence the residual capacity of school 1 at § under TTC (%)
is O (g|C|), and so since 7 has full support and has density bounded from above
and below by M and m, it holds that |j — 5 ({V) |2 = O (2z]C|). (If the residual
capacity is negative we can exchange the roles of v and 4 and argue similarly.)

Let us now show that the inductive assumption holds. Fix a school ¢. Then
by Proposition 11 the set of students with ranks in (y,~ (0)] under £ and ranks in
(7,7 (0)] under £ who are assigned to ¢ under TT'C' () and not under TTC (%) has 7j-
measure O (¢ |C|). Moreover, since | — 7 (t) |2 = O (2¢|C|) and 7 has full support
and has density bounded from above and below by M and m, the set of students with
ranks in (7,7 ({V))] assigned to school ¢ by TTC () has f-measure O (¢ |C|). Hence
the set of students assigned to ¢ under TTC () by time t(!) and not under TTC (7)
by time ™) has n-measure O (¢ |C|). Moreover, if t") < ) then for sufficiently small
¢ it holds that ) = min,#(©, and otherwise there exists a relabeling of the schools
such that this is true, and so o (1) = 1.

We now show the inductive step, proving for /41 assuming true for 1,2,...,¢. By

inductive assumption, for all ¢ the measure of students assigned to ¢ under TTC (7)
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and not under TTC () by the points v (¢©) , 5 ({) is O (e£|C]) for all c.

Let = v (t“)) and y = v (V). Define & € Im (%) to be the minimal point such
that x < 7 and there exists b such that x, = ;. We show that T is near 'y(t(z)), i.e.
|z — 7 (t9)], = O (¢). Now by inductive assumption n ({#[r? € (z =~ (t) 5 ({9)]}) =
O (e£|C|) and so |z —7 (1) ‘2 = O (g). Moreover |&, — 7, (1) ‘2 = |z — F (1) |2
which we have just shown is O (¢). Finally, since 1 has full support and has density
bounded from above and below by M and m, it holds that maxyc , 1%8 =0 (%)
and so for all ¢ it holds that |xc e ( } < O )

The remainder of the proof runs much the same as in the base case, with slight

adjustments to account for the fact that z # &. Define § € I'm (%) to be the minimal
point such that y < ¢ and there exists ¢ such that y. = y.. We show that ¢ is near
(), e }y (D )‘2 = O (e). Now by Proposition 11 the set of students
with ranks in (y, 2] under € and ranks in (g, ] under £ who are assigned to /+1 under
TTC () and not under T7T'C (%) has -measure O (¢ |C|). This, together with the
inductive assumption that the difference in students assigned to school £ is O (£ |C|),
shows that the residual capacity of school £+ 1 at g under TTC (%) is O (e (¢ + 1) |C|),
and so since 7 has full support and has density bounded from above and below by M
and m, it holds that |§— 5 ({“*V)|, = O (Xe (¢ +1)|C|). (If the residual capacity
is negative we can exchange the roles of v and 4 and argue similarly.)

Let us now show that the inductive assumption holds. Fix a school ¢. Then by
Proposition 11 the set of students with ranks in (y,z] under £ and ranks in (g, Z]
under £ who are assigned to ¢ under T7C (v) and not under TTC (%) has f-measure
O (¢|C|). Moreover, since |j — 7 (V) ‘2 = O (M¢ (¢ +1)|C|) and 7 has full support
and has density bounded from above and below by M and m, the set of students with
ranks in (g, 7 (¢*1)] assigned to school ¢ by TTC () has f-measure O (¢ (€ + 1) |C]).
Hence the set of students assigned to ¢ under T7C () by time t“*1 and not under
TTC (%) by time t“*1) has n-measure O (¢ (¢ + 1) |C|). Moreover if (‘+1) < ¢t(*+2) then
for sufficiently small ¢ it holds that £t = min..,t©, and otherwise there exists a
relabeling of the schools such that this is true, and so o (¢ + 1) = £+ 1. O

D.6 Proof of Proposition 3

Throughout the proof, we omit the dependence on E. We show that there exist TTC
cutoffs {(p*);, =% (¢'9)} such that the TTC path and stopping times ~, {t} .
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satisfy trade balance and capacity for ® (E) and B* (s) C B (s) C B (s;p*) C B*(s).
For brevity, for a TTC path v and discrete economy E’, we say that v is a TTC path
for E' if there exist stopping times {t(C)}CEC such that 7 (-), {t(C)}CEC satisfy trade
balance and capacity for ® (E'), and write p = {7, (t))} € P (E').

We first show that B* (s) C B (s). Suppose ¢ ¢ B (s). Then there exists a TTC
path ~ for F such that r* + ﬁl <7 (t(c)). Hence for all = there exists a TTC
path ¥ € P ([E_; =]) such that r* + &1 <7 (t(c)). By Proposition 2 and Theorem

S
2 for all = it holds that parrc (s | [E‘_:; =]) = maxg {c : r; > 7 (t¥), for some b}.
Hence for all > it holds that parre (s | [E—-s;>]) # ¢ and so ¢ & B* (s).

We next show that B(s) C B(s;p*) € B*(s). Intuitively, we construct the
special TTC path 74 for E by clearing as many cycles as possible that do not involve
student s. Formally, let > be an ordering over subsets of C where: (1) all subsets
involving student s’s top choice available school ¢ (under the preferences =° in FE)
come after all subsets not involving ¢; and (2) subject to this, subsets are ordered
via the shortlex order. Let 4 be the TTC path for E obtained by selecting valid
directions with minimal support under the order >>. (Such a path exists since the
resulting valid directions d are piecewise Lipschitz continuous.)

It follows trivially from the definition of B (s) that B(s) C B (s;p*). We now
show that B (s;p*) C B*(s). For suppose ¢ € B (s;p*). Consider the preferences >’
that put school ¢ first, and then all other schools in the order given by >°. We show
that parre (s | [E—s;=']) = c. Now since ¢ € B (s;p*), it holds that r* £ 7 (¢).
In other words, if we let 7% = inf {7 | 4 (7) 2 r°} be the time that the cube I*
corresponding to student s starts clearing, then school c is available at time 7°.
Moreover if we let 7' be the TTC path for [E_g;>'] obtained by selecting valid
directions with minimal support under the order >, then for all 7 < 7° it holds that
7' (1) = 74 (1), and so school ¢ is again available at time 7°. Hence by Proposition 2
and Theorem 2 it holds that pgrre (s | [E—s;>']) = ¢ and so ¢ € B* (s).

E Proofs for Applications (Section 4)

Throughout this section, we will say that a vector d is a wvalid direction at point x if

d satisfies the marginal trade balance equations at x, and d -1 = —1.
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E.1 Optimal Investment in School Quality

In this section, we prove the results stated in Section 4.1. We will assume that the
total measure of students is 1, and speak of student measures and student proportions

interchangeably.

Proofs for Section 4.1

Proof of Proposition 4. Let v, p, {t(l),t(Q)} be the TTC path, cutoffs and stopping
times with quality &, and let 4, p, {tV, @} be the TTC path, cutoffs and stopping
times with quality 5. When we change 9, to 34, this increases the relative popularity
of school /.

Consider first when ¢ = 1. As there are only two schools, |d; (z)| decreases and
|ds ()| increases for all z. It follows that if v; (£) = 41 (£) then 45 (£) > 42 (¢), and if
Y2 (t) = 42 (£) then v (t) < 41 (£). Suppose that p} < pi. Then there exists ¢ < ¢tV
such that pj = 7o (tV) < 4o (t) = 4 (i), and so

as required. Hence it suffices to show that pj < ps.

Suppose for the sake of contradiction that ps > pi. Then there exists ¢ < ) such
that p} = 7o (t1) =45 () > 42 ({'V), and so Tz (13 tV) € 75 (%;t) C Tz (9; V) and
similarly 77 (v;t") © Ty (3;1W) . It follows that

n ({9 T (w(l)) | ma (1,2} = 1}) < ({9 eTs (fy; £<1>) | max {1,2) = 1}) :

since the set increased and more students want school 1, and similarly
n ({9 e (fy;t(l)) | max {1,2} = 2}) > 1 <{9 €T (fAy; f(l)> | max {1,2} = 2}) ,
>.9 >_9

However, integrating over the marginal trade balance equations gives that

0 ({9 €T (fm“)) | max {1,2) = 1}) =7 ({e €T (’y; t<1>> [ max {1,2) = 2}) and
i ({9 e T (%1V) | ma (1,2} = 1}) — 4 <{9 e 7i (%10) | max (1,2} = 2}) ,
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which gives the required contradiction. The fact that p3 decreases follows from the

fact that pi increases, since the total number of assigned students is the same. O

Proof of Proposition 5.

TTC Cutoffs We calculate the TTC cutoffs under the logit model for different
student choice probabilities by using the TTC paths and trade balance equations.
In round 1, the marginals H{ (z) for b,c € C at each point z € [0, 1] are given by

Hg (z) = €% HC,# zo. Hence v, = ), f]g (x) = (Zb e‘se) HC,# To = HC/# Zer, SO

v = e and the matrix H (x) is given by
mine ¢
. . 8.\ ming x s . o
ming e ming . 1—(1—-e if b=c,
Hy () = e —"=+ 1), (1 T ) - ( )
Lo Lo gle T T otherwise,

Tp

which is irreducible and gives a unique valid direction d (x) satisfying d (z) H (z) =
d (z) . To solve for this, we observe that this equation is the same as d (z) (H () — I) =
0, where I is the n-dimensional identity matrix, and and [H (z) — I] has (b, ¢)th entry

—(1— )M pp

otherwise.

Since this has rank n — 1, the nullspace is easily obtained by replacing the last
column of H (z) — I with ones, inverting the matrix and left multiplying it to the
vector el (the vector with all zero entries, other than a 1 in the |C|th entry). This

yields the valid direction d (x) with cth component

edex,

_—Zb oy

We now find a valid TTC path v using the trade balance equations 1. Since the

ratios of the components of the gradient Zbgzg only depend on zy, z. and the ., we

d.(z) =

solve for x. in terms of x1, using the fact that the path starts at (1,1). This gives
the path v defined by 7. (7' (z1)) = 26" for all c.

Recall that the schools are indexed so that school ¢ is the most demanded school,
that is, eqill = max, eqi Since we are only interested in the changes in the cutoffs
y (t(l)) and not in the specific time, let us assume without loss of generality that
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91

7 (t) = 1 —t. Then school ¢ fills at time ¢t = 1 — (1 -4 (3, e*)) = R

91

1= (1=p1 (€)= < Hence the round 1 cutoffs are

g blc

e’b
_ 5. 4
pé — (1 o t(1)>e5b S _ (1 — (Z 66C/>> Xere _ (1 —n (Z €§C/>> . (10)

It can be shown by projecting onto the remaining coordinates and using induction

that the round ¢ cutoffs are given by

ble
ble

c _ (Hc’<c 1,%;) (Hc’pi’il — Pe (z:c’z(:eéd))7r lsz ¢

Dy
pg ifb<e.

TTC Cutoffs - Comparative Statics We perform some comparative statics
calculations for the TTC cutoffs under the logit model. For b # ¢ it holds that the
TTC cutoff p; for using priority at school b to receive a seat at school 1 is decreasing
in (5@,

Sy

apl 0 ” NG
25, ~ a0, |\ 1 e ;e

1 ety | 1 1 .
‘_p”<<A1>2> [‘ “(M:aa)Al) TO-@A) ]

is negative, since 0 < m < 1, where for brevity we define A¢ = szc e,

q1
. 661
We can decompose this change as

1 eSe+6b L . L edetoy
= () - )04 (55 [ <

where the first term is the increase in p, due to the fact that relatively fewer

students are pointed to and cleared by school b for every marginal change in rank,
and the second term is the decrease in p; due to the fact that school 1 is relatively
less popular now, and so more students need to be given a budget set of CV) in order

for school 1 to reach capacity.
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For b = ¢ the TTC cutoff p; is again decreasing in dy,

S

3p} 0 q1 5 e Oe!
= - 1 - = </
a6, 90, o1 > e

c!

= () () () (= )
’ (A1)? 1-(&)ar) P an? ) \0-(%)aY

is negative since both terms are negative.
Similarly, for ¢ < ¢ and b # ¢ the TTC cutoff p§ is decreasing in Jy, since (if we
let g. = 4= — 4=1)

650 e‘sc— 1

ope 0 1 S
Dy ~ , o=
< — A< 17 7 c ec

o o ( (1) (Z ))

So+0y 1 1
= —py C _)l-m + —1| —pg
"\ (ar)? L= PegeAe ) (1= Pegele) ’
apzj

Sy 5 OP°
€ ch 98,

(1 = Pcg.A°)

is negative, where P¢ = []. _, z%’ since 0 < 1—P¢q.A° < 1 and 68—1;: =P ... paje
C/

0 so both terms are negative.
We can decompose this change as follows. Let P¢ = []._, }%. For ¢ < ¢ and
b > ¢, b# (it holds that

c

2 (S (1 (% - 52) )
(

6§g+§b
-y “H e
(A9 ) [ (1= P (4 - =) a) L= Pe (% - ) o)

which is negative. The first term is the increase in pj due to the fact that relatively
fewer students are pointed to and cleared by school j for every marginal change in
rank, and the second and third terms are the decrease in p; due to the fact that
schools 1 through c are relatively less popular now, and so more students need to
be given a budget set of CV,C? ... C© in order for schools 1 through ¢ to reach

capacity.
For ¢ < ¢ and b = ¢ the TTC cutoff pj is also decreasing in J,, since (if we let
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(Pae) + a4

(1 — P<g.A°)

:‘W[(ﬁ$§§fw>m(lJ@AJ]‘W(iQ

/
g 1
9 p

which is negative, since 2~ = P ( ", o™ > 0 so both terms are negative.

When ¢ = 7, the effects of changing d, on the cutoffs required the obtain a seat

at school ¢ are a little more involved. For ¢ = ¢ and b # /,

e5b

zc/;e‘;c'
() L) ECon(eo
()| (s ) o

-1 Se—1

where P, = [[._, u» the first term is positive, and the second term has the same
sign as its numerator 8%2 <1 P, (— — %‘;j) A€>. Similarly for ¢ = ¢ and b =/,

e

e
8p§ 0 qe Q-1 Xersee
—t — 1 _ P _ !
déy 06y ¢ (e5e 65271) ;e

e

Al ey I & (1-P (% -42) )
_( A¢ )n 1_P€<%—;27—_11)Ag + (1—Pe(7_q£_l)A£)
where P, = [], <, /, the first term is negative, and the second term has the

Se—1

same sign as its numerator 85 (1 — B (— — q;[ 11> A£>. Since W (wa pb) > 0, it

follows that > 0 for all b # ¢, and there are regimes in Wthh is positive, and

regimes Where 1t is negative. O]

29



Proofs for Section 4.1

Proof of Proposition 6.

Welfare Expressions We derive the welfare expressions corresponding to these
cutoffs. Let C©) = {c¢,c+1,...,n}. Since the schools are ordered so that &< E <
- < 4, it follows that the schools also fill in the order 1,2,...,n
Suppose that the total mass of students is 1. Then the mass of students with
budget set CV) is given by N! = ¢ (Ze”éféb), and the mass of students with budget

65
set C? is given by N? = (qg %]\ﬂ) (%) = (q2 — ) (Zb>2€ t). An
inductive argument shows that the proportion of students with budget set C9 is

Ne = (de -2 (Z)

b>c

which depends only on d, for b > ¢ — 1.
Moreover, each such student with budget set C'®), conditional on their budget set,
has expected utility Small and Rosen (1981)

U =E {max{&bjtegc ] =In [Zedb] :

(c)
cdeC b>c

which depends only on ¢, for b > ¢. Hence the expected social welfare from fixed

qualities 0. is given by

C c __ qc q671 c c
Urre =Y N°-U —Z<E_66H>A In A,

[

where A= 3", %

Welfare - Comparative Statics Taking derivatives, we obtain that

AUrre N qu dNe due
— L JTcC NE€. .JJ¢ NE€.
s, Z ( a, U d(sg) CZ i, Y +; a5,
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e

where > _, N¢- fﬁg: =y ., (ech — %C—‘jl) = qo. It follows that

U

dUrrc dN*
o, 2 do,

c<l+1

]

Proof of Proposition 7. We solve for the social welfare maximixing budget allocation.
For a fixed runout ordering (i.e. % < J < ... < 4), the central school board’s

investment problem is given by the program

s (e)e(s) w

j>i

We can reformulate this as the following program,

q1 q2 q1 i—1
———— | KInK = — ——— | U InU. U, InU;
2o (K—Zﬂiz) nE (H‘z K-Zﬂﬂ) 2lnlz+ ) (H f%—1> !

>3 ¢
(12)
st Bl Ty 3
Ki—1 ~ Ki
q1 q2
— <=
K =%, ki = Ko

where U; = 3, K.
The reformulated problem (12) has objective function

o q1 Qo q1 2 2 qi qi—1 i i
U(n)—(K_ZiHi)Kan—i—(@ K—Zm)A In A +§(m - 1)Al A

where A" = Y j>i Kj. Taking the derivatives with respect to the budget allocations
Ky gives

ou O K 2 4 A qr k AF
[ . & S 1k — Akt
Ok ((K s /‘%‘)2> (Kln A2 K A ) Z AT (Kk)Q (”k NAkTT )

2<1<k

where Kln% — (K —A% >0, In Ail > 0,fff and K, — AFIn AA:H > 0 and so

31



ou
oy = OVE.

Moreover, if % = £ then defining a new problem with n — 1 schools, and

capacities ¢ and budget k

g ifj<i—1 K ifj<i—1

qj+1 1f]>l—1 Kj+1 1f]>l—1
leads to a problem with the same objective function, since

(Qi_l - qi_2> AT n AT 4 (Ql - %‘-1) Alln A® + <qi+1 - %) Al AT

Ki—1 Ri—2 Kq Ri—1 Ri+1 K

_ (qi—1 ta Qi—2) Ailn A1 o <qi+1 -1t G ) Aitl iy AiHL
Ki—1+ Ki Ki—2 Ki+l  Ki—1 T K

Hence if there exists ¢ for which g— =+ %, we may take ¢ to be minimal such
that this occurs, decrease each of k1, ..., k;_1 proportionally so that k; + -+ 4+ K;_1
decreases by ¢ and increase k; by € and increase resulting value of the objective.
It follows that the objective is maximized when X = 2 = ... = I je  when

the money assigned to each school is proportional to the number of seats at the
school. [

E.2 Design of TTC Priorities

We demonstrate how to calculate the TTC cutoffs for the two economies in Figure 7
by using the TTC paths and trade balance equations.

Consider the economy &, where the top priority students have ranks uniformly
distributed in [m,1)°. If & = (z1,2;) is on the diagonal, then HY (z) = % for all

1

i,7 € {1,2}, and so there is a unique valid direction d (¥) = [ 2 ] Moreover,

)
v(t) = (%, 1) satisfies in—Sf) = d (v (t)) for all ¢ and hence Theorem 2 implies that

v(t) = (4,%) is the unique TTC path, and the cutoff points p§ = /T — 2¢ give the
unique TTC allocation.

Consider now the economy &, where top priority students have ranks uniformly
distributed in the 7 x 7 square (1 — 7, 1] x (m, m + 7] for some small 7.

If 7 is in (1 —7,1] x [m + 7, 1] then H{ (v) = 3 (m + (1 —m) 1=2) for all j and
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. —1
Hj (x) = % for all j, hence there is a unique valid direction d (z) = " -(lff ) [ . 2

If 7 is in (m,1—7] x (m, 1] then H} (v) = 2 for all 7,5 and there is a unique valid

] |

Finally, if # = (2, z,) is in [0,1]\ (m, 1]* then Hi (z) = x5 and Hj = sy for all

direction d (z) = [

NI= N

-
j and there is a unique valid direction d (z) = — [ !

. Hence the TTC path

x1t+x2 — 9

v (t) has gradient proportional to 2 | from the point (1, 1) to the point
1 (1-m)

(1—%,1—%—%), to [:

_ (1-m)?

<m + 1%, m) and to [ B 1’”2 ] from the point (m +

(Vs VT =20 (=25 20)) = (5.1).

Finally, we show that if economy &, is given by perturbing the relative ranks of
students in {0 | r? > m Vc}, then the TTC cutoffs for & are given by p} = p} =

x, pb=p3 =1y where x <p= /_1_217;i%m2 and y > p = V(1T =2¢) (1 = 2m + 2m2).

(By symmetry, it follows that p < 2,y <p.) Let 1 and ~, be the TTC paths for &

rm

from the point (1 —r1l—7r— %) to the point

N= N

(1-m)

- , m) to the point

and & respectively. Then the TTC path v, for & has gradient L [ —Fhound ]

Thound+m —m
from (Zpound, m) to (z,y).

Consider the aggregate trade balance equations for students assigned before the
TTC path reaches (Zpouna, m). They stipulate that the measure of students in [0, m| x
[m, 1] who prefer school 1 is at most the measure of students who are either perturbed,
or in [Tpound, 1] % [0,m], and who prefer school 2. This means that $m (1 —m) <
(@ =m)® +m (1 — Toound)), OF Thouna < m + %

andsoxﬁﬁandyz%:g_y.

, and hence 7, lies above ;%

39That is, for each @1, if (z1,y1) lies on 1 and (z1,y2) lies on 7, then yo > y;.
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Figure 13: Economy & from Example 9. The black borders partition the space of students into four
regions. The density of students is zero on white areas, and constant on each of the shaded areas
within a bordered region. In each of the four regions, the total measure of students within is equal
to the total area (white and shaded) within the borders of the region.

E.3 Comparing Top Trading Cycles and Deferred Accep-

tance

In this section, we derive the expressions for the TTC and DA cutoffs given in Section
4.3.

Consider the TTC cutoffs for the neighborhood priority setting. We prove by
induction on ¢ that p§ =1- ‘21—2 for all ¢, 7 such that 7 > /.

Base case: ( =1.

For each school i, there are measure ¢ of students whose first choice school is 1,

aq of whom have priority at ¢ and %

. . . o ot 1t _ _t
The TTC path is given by the diagonal, v (t) = (1 ol \/ﬁ>
At the point 7 () = (z,z,...,x) (where z > 1) a fraction 2 (1 — z) of students from

of whom have priority at school j, for all

each neighborhood have been assigned. Since the same proportion of students have
each school as their top choice, this means that the quantity of students assigned to
each school i is 2 (1 — x) q. Hence the cutoffs are given by considering school 1, which

has the smallest capacity, and setting the quantity assigned to school 1 equal to its
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capacity ¢;. It follows that p; = z* for all j, where 2 (1 — 2*) ¢ = ¢1, which yields

q .
p}zl—Q—; for all j.

Inductive step.

Suppose we know that the cutoffs {pé}ij:iq satisfy pj = 1 — 2. We show by

induction that the (¢ + 1)th set of cutoffs {p§+1}j>€ are given by p?’_l =1- qg%.

The TTC path is given by the diagonal when restricted to the last n — ¢ coordi-

nates, v (t© +t) = <p%,p§,...,pﬁ,p§—\/ﬁ,pﬁ—ﬁ,...,pﬁ— - ).

Consider a neighborhood i. If i > ¢, at the point ~y (t) = (pi,p3,...,pb5z, 2, ..., x)

(where x > %) a fraction 2 (pf — x) of (all previously assigned and unassigned) stu-
dents from neighborhood ¢ have been assigned in round ¢ + 1. If i < ¢, no students
from neighborhood ¢ have been assigned in round ¢ + 1.

Consider the set of students S who live in one of the neighborhoods ¢ + 1,/ +
2,...,n. The same proportion of these students have each remaining school as their
top choice out of the remaining schools. This means that for any 7 > ¢, the quantity

of students assigned to school ¢ in round ¢+ 1 by time ¢ is a ﬁ fraction of the total

number of students assigned in round ¢ + 1 by time ¢, and is given by(n — ¢) qﬁ =

2 (pﬁ — x) q. Hence the cutoffs are given by considering school ¢ + 1, which has the
smallest residual, and setting the quantity assigned to school £+1 equal to its residual
capacity qsr1—qp. It follows that p?“ = z* for all j > ¢ where 2 (pf — x*) q = Qu+1— e,
which yields

(41 _ z_qprl—%_1_2_Q12+1—%:1_Q12+1

p; Dy for all j > ¢.

2q 2q 2q

This completes the proof that the TTC cutoffs are given by pg- = p{ =1- g—; for
all 1 < 7.

Now consider the DA cutoffs. We show that the cutoffs p; = 1 — g—; satisfy the
supply-demand equations. We first remark that the cutoff at school 7 is higher than
1
5.
has priority at exactly one school, this means that every student is either above the

all the ranks of students without priority at school i, p; > Since every student

cutoff for exactly one school and is assigned to that school, or is below all the cutoffs

and remains unassigned. Hence there are 2q (1 — p;) = ¢; students assigned to school

1 for all 7, and the supply-demand equations are satisfied.
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F Proofs for Section A

F.1 Derivation of Marginal Trade Balance Equations

In this section, we show that the marginal trade balance equations (1) hold,

~ (1) =+ (7) H (v (7)) for all 7.

The idea is that the measure of students who trade into a school ¢ must be equal to
the measure of students who trade out of c.

In particular, suppose that at some time 7 the TTC algorithm has assigned exactly
the set of students with rank better than z = (1), and the set of available schools
is C. Consider the incremental step of a TTC path v from (7) = x over € units
of time. The process of cycle clearing imposes that for any school ¢ € C', the total
amount of seats offered by school ¢ from time 7 to 7 + € is equal to the amount of
students assigned to ¢ plus the amount of seats that were offered but not claimed
over that same time period. In the continuum model the set of seats offered but not
claimed is of n-measure 0. Hence the set of students assigned to school ¢ from time
T to T 4+ € has the same measure as the set of students who were offered a seat at

school ¢ in that time,

n({6 €0 |1 cly(r+e),v(r) and CR’ (C) = ¢})
=n ({9 cO | I cr,m4+¢ st ! =4.(r) and r’ < 7(7’)}) , (13)

or more compactly, 1 (T (v; [7,7 +¢€])) = n (T (v; [, 7 + €])) .
Let us divide equation (13) by 6. (€) = 7. (7) — 7. (7 + €) and take the limit as
e — 0. We will show that the resulting left hand side expression is equal to

>l fsi 8 '&L@n({e €0 [ elr—6-"x) and OW(C)=c})  (14)

40A student can have a seat that is offered but not claimed in one of two ways. The first is the
seat is offered at time 7 and not yet claimed by a trade. The second is that the student that got
offered two or more seats at the same time 7/ < 7 (and was assigned through a trade involving only
one seat). Both of these sets of students are of -measure 0 under our assumptions.
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where e’ denotes the unit vector in the direction of coordinate b, and 6, (¢) =
(7 (1) — 7 (T +€)). Similarly, we will show that the resulting right hand side ex-

pression is equal to*!

(151_13(1)%77 ({60 [P elz—0-¢2)}) :ZHg‘C(x). (15)

acC

After equating equations (14) and (15), a little algebra shows that this is equiva-

lent to the marginal trade balance equations (1),

Let us now formally prove that the marginal trade balance equations follow from
equation (13). For b,c € C, z € [0,1]°,a € R we define the set 42

Tf (z,0) = {0 €O |’ € [x — ae’,z) and CR’ (C (7)) = c}.

We may think of T (z, ) as the set of the next « students on school b’s priority list
who are unassigned when v (7) = z, and want school c¢. We remark that the sets
used in the definition of the Hf (x) are precisely the sets T (x, ).

We can use the sets T (z,«) to approximate the expressions in equation (13)
involving 7. (7;-) and T° (7;-).

Lemma 9. Let v (7) = x and for alle > 0 let § (€) = v (1) —y(T+¢€). For sufficiently
small €, during the interval [T, T + €], the set of students who were assigned to school
c1s

T (i [r7 + €)= T (.64 (0))

b

and the set of students who were offered a seat at school ¢ is

Te (v [m, 7+ €]) Udeé UA

for some small set A C ©. Further, it holds that liII(l)% -n(A) =0, and for any ¢ #
T—r

41The fact that the quantities in equation (13) are equal to the quantities in equations (14) and
(15) follows from our assumption that the density is bounded, since in both cases we double count
a set of students whose ranks have Lebesgue measure tending to 0.

42We use the notation [z,7) = {z € R" | z, < 2; < T; Vi } for 2,7 € R", and e € RC is a vector
whose c-th coordinate is equal to 1 and all other coordinates are 0.
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d,d# d € C we have liII(l)% - (T (2,6, (€)) N TS (z,60 (€)) = 0 and T (z, 6. (1)) N
T (2,0 (€)) = ¢.

Proof. The first two equations are easily verified, and the fact that the last intersec-
tion is empty is also easy to verify. To show the bound on the measure of A, we ob-
serve that it is contained in the set |J, Uq (T(z, d. (€)) N T4(z, 0w (€))), so it suffices
to show that }_li%ql_ - (T (z,0.(€)) NT3 (z,6- (¢))) = 0. This follows from the fact
that the density defining 7 is upper bounded by M, so n (Tcd (z,0.(€))NTE (2,00 (e))) <
M |Ye(T) = Y (T + )| |70 (7)) — Yo (T + €)]. Since for all schools ¢ the function 7. is

continuous and has bounded derivative, it is also Lipschitz continuous, so

0 (A) < T (T (6 () OV TE (2,00 (0))) < MLcLe

for some Lipschitz constants L. and L. and the lemma follows. O

We now now ready to take limits and verify that equation (13) implies that
the marginal trade balance equations hold. Let us divide equation (13) by 4. (¢) =
Ye (T) — 7o (7 + €) and take the limit as € — 0. Then on the left hand side we obtain

lim 5#() (T (i [ + ) = lim —— 5 (UT,, 5,6 (¢ ) (Lemma 9)
iy "bezc&l(e)n(ﬁ(m(e)m()((Hw(> 5C<(Z)+e>|| >>] v < M)
~ iy > 5616)” T (2,5, (¢)))| (v Lipschitz continuous)
iy becgi(? sr{0ce 1 cl—a(0-c )andChg(C):c})]

!
_ Z N \T) (T C‘C (z) (by definition of § and H)
= (r)

as required. Similarly, on the right hand side we obtain
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_ o
gg%()nmw;[r,wem:ggng S (1 (e, 5c<e>>>+0<<'7<7+2<ej( lee) )] (Lemima 9)

=lim 5 n (T2 (x,6.(€)))| (v is Lipschitz continuous)

e—0 aEC

. 1 0 c 0 —
_eh—% 2 56(6)77 ({60 |1 €z —10c(e) - €°,2) and Ch’ (C) = a})]

= Z HC () (by definition of § and H)

as required. This completes the proof.

F.2 Proof of Lemma 1

We prove the following slightly more general theorem.

Theorem 5. Let € = (C,0,1,q) be a continuum economy such that H () is irre-
ducible for all x and C'. Then there exists a unique valid TTC path . Within each

round vy (+) is given by

O _ a0

where d (z) is the unique valid direction from = = ~ (t) that satisfies d (z) = d (z) H (z).
Moreover, if we let A(z) be obtained from H (x) — I by replacing the nth column

with the all ones vector 1, then
d@) = 0" ~1]A@)7

Proof. It sufﬁces to show that d (-) is unique. The existence and uniqueness of 7 (+)
satisfying “ = d (v (t)) follows by invoking Picard-Lindelof as in the proof of
Theorem 2.

Consider the equations,

d(z)H (z) =d(x)
d(z)-1 =-1.

When H (z) is irreducible, every choice of n — 1 columns of H (z) — I gives an

independent set whose span does not contain 1. Therefore if we let A (x) be given
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by replacing the nth column in H (z) — I with 1, then A (z) has full rank, and the

above equations are equivalent to

d(x)A(x)z[oT —1},
[OT -1 } Az) ™"

ie. d(z)

Hence d (z) is unique for each x, and hence v (-) is uniquely determined. O
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